New method of galactic axion detection

M. Yoshimura RIIS, Okayama University

m.yoshimura @axion workshop 20/12/2017

Introduction: QCD-axion and its cosmology

 PQ-symmetry solution to strong CP problem: the most compelling, leading to the axion

 $m_a = 10^2 \sim 10^{-3} \text{ meV}$ $f_a = 10^8 \sim 10^{13} \text{GeV},$ $g_{a\gamma\gamma} = c_{a\gamma\gamma} \frac{\alpha}{\pi f_a}$

- Cold dark matter, perhaps the most attractive in view of absence of SUSY signals in LHC
- Galactic number density $n_a \sim 10^{13} {
 m cm}^{-3}$ comparable to BB photons of T= 10^4 K

Ongoing and proposed experiments

Sikivie's original idea

From CAST group paper

 Axion haloscope has the highest sensitivity, but time consuming experiment

Microscopic process of detection using atoms and molecules

MY and N. Sasao, arXiv:1710.11262

$$\sqrt{\frac{\rho_a}{2}} \frac{c_{a\gamma\gamma} \alpha}{\pi m_a f_a} \left(\frac{\vec{d}_{nf} \cdot \vec{E}_s \vec{d}_{ni} \cdot \vec{B}_t}{\epsilon_{ni}} \frac{(k_t - q)_0^2}{(k_t - q)^2} + (s \leftrightarrow t) \right) \times 2 \,,$$

Interesting feature of probability amplitude

propagator sandwiched

between external EM field and atomic dipole

$$\vec{B}_{i}(1) \cdot \langle 0|T(\vec{E}(1)\vec{E}(2))|0\rangle \cdot \vec{d}(2), \ i = s, t$$

$$\Rightarrow i \frac{(k_{i} - q_{a})_{0}^{2}}{(k_{-}q_{a})^{2}} \vec{B}_{i}(1) \cdot \vec{d}(2) \sim -i \frac{\omega_{i}}{2m_{a}} \vec{B}_{i}(1) \cdot \vec{d}(2)$$

 apparently T-violating and P-violating without directly detecting the axion
 large by ¹

(2) large by $\frac{1}{m_a}$

3 enhancement factors

• Ambient axions, giving enhanced coupling

- Triggered photon number density $CO_2 \text{ laser of } \omega_t = 0.124 \text{eV photon number density } 10^{18} \text{ cm}^{-3}$
- Macro-coherence amplification
- Last two issues: verified by Okayama PSR experiments of p-H_2

Induced two-photon coupling by galactic axion

induced dimensionless "
$$g_{a\gamma\gamma}$$
" =

ar 144

$$\sqrt{\frac{n_G}{2m_a}}g_{a\gamma\gamma} = c_{a\gamma\gamma}\sqrt{\frac{\rho_G}{2}}\frac{\alpha}{\pi m_a f_a} \sim 10^{-22}c_{a\gamma\gamma}$$

 $\approx~{\rm Fermi}$ constant at 1eV scale

$$c_{a\gamma\gamma} = -0.97$$
, KSVZ, $= 0.36$, DFSZ

Rate amplification by

macroscopic coherence: an oversimplifed view

- Super-radiance coherent volume (Dicke)
 - In case of SR, coherent volume is proportional to $\lambda^2 L$.
 - Phase decoherence time (T_2) must be longer than T_{SR}

Rate
$$\propto \left| \sum_{j}^{N} e^{i\vec{k}\cdot\vec{r}_{j}} M_{atm} \right|^{2} \propto N^{2} \quad (\text{for } |r_{j} - r_{l}| \leq \lambda)$$

- For a process with plural outgoing particles (PSR, RENP etc)
 - Phase matching condition (momentum conservation) is satisfied.
 - Coherent volume is not limited by λ ., can be macroscopic.

Rate
$$\propto \left| \sum_{j}^{N} e^{i(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}) \cdot \vec{r}_{j}} M_{atm} \right|^{2} \propto N^{2} \quad (\text{for } \vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} = 0)$$

Superradiance: 2 level and E1 photon case

1916-1997

Figure 2.2. Oscilloscope trace of the super-radiance pulse observed by Skribanowitz *et al* [SHMF73] in HF gas at 84 μ m ($J = 3 \rightarrow 2$), pumped by the $R_1(2)$ laser line, and the theoretical fit. The parameters are: pump intensity $i = 1 \text{ kW cm}^{-2}$, p = 1.3 mTorr, L = 100 cm. The small peak on the oscilloscope trace at t = 0 is the 3 μ m pump pulse, highly attenuated.

m.yoshimura @axion workshop 20/12/2017

PSR experiments at Okayama

Rate Amplification using Coherence

Enhancement

 $\frac{\text{measured photon number}}{\text{spontaneous emission}} = \frac{6 \times 10^{11}}{2 \times 10^{-7}} = 10^{18}$

Coherent amplification is demonstrated for multi-particle emission procession

20/12/2017

ΗH

Our target choice for axion detection

 p-H_2, since our group at Okayama has experiences with this molecule, such as coherence determination, PSR measurements both for gas and solid.

Y. Miyamoto *et al.*, "Externally triggered coherent two-photon emission from hydrogen molecules", Prog. Theor. Exp. Phys. vol. 2015, 081C01 (2015);
Y. Miyamoto *et al.*, "Vibrational Two-Photon Emission from Coherently Excited Solid Parahydrogen", J. Phys. Chem. A, vol. 121, 3943 (2017);
Y. Miyamoto *et al.*, "Observation of coherent two-photon emission from the first vibrationally-excited state of hydrogen molecules", Prog. Theor. Exp. Phys., vol. 2014, 113C01 (2014).

$$\begin{split} \frac{d\Gamma_{\text{off}}}{d\Omega_s} &= \frac{\rho_G}{64\pi^4} (\frac{c_{a\gamma\gamma}\alpha}{m_a f_a})^2 \frac{\mu_{if}^2 \epsilon_{if}^2}{m_a^2} \omega_s^3 E_t^2 \rho_{if}^2 N_T^2 \sin^2\theta_{\text{pol}} \mathcal{A} \\ \mu_{if} &= \text{polarizability} \ \sim 2 \sum_n \frac{d_{ni} d_{nf}}{\epsilon_{ni}} \sim 1.43 \times 10^{-24} \,\text{cm}^3 \end{split} \text{For p-H_2} \\ \rho_{if} &= \text{coherence} \\ \theta_{\text{pol}} &= \text{relative angle between trigger and signal linear polarizations} \end{split}$$

$$\mathcal{A} = \frac{1}{(\pi R^2 L)^2} \left(\frac{2\sin(K_{\parallel}L)}{K_{\parallel}}\right)^2 \left(\frac{2\pi R}{K_{\perp}}J_1(K_{\perp}R)\right)^2$$
$$\vec{K} = \vec{k}_s + \vec{k}_t - \vec{p}_{if} - \vec{q}_a$$

$$\frac{d\Gamma_{\text{off}}}{d\Omega_s} \sim 2.9 \times 10^5 \,\text{sec}^{-1} (\frac{10\mu \,\text{eV}}{m_a})^2 x_t (1-x_t)^3 \sin^2\theta_{\text{pol}} \,\mathcal{A}X \,, \, \mathcal{A} = O(10^{-7}) \\ X = c_{a\gamma\gamma}^2 (\frac{n_T}{2.6 \times 10^{22} \,\text{cm}^{-3}})^2 (\frac{n_t}{10^{18} \,\text{cm}^{-3}}) (\frac{\rho_{if}}{0.1})^2 (\frac{V}{\text{cm}^3})^2 \,, \quad x_t = \frac{\omega_t}{\epsilon_{if}} \,.$$

Detection rates: work with N.Sasao

m.yoshimura @axion workshop 20/12/2017

0.0035

0.0040

0.0045

Finite target size effect

Formula $|\int_{V} d^{3}x e^{i\vec{K}\cdot\vec{x}}|^{2} = V(2\pi)^{3}\delta(\vec{K})$ is a useful guide, but cannot be used for rate calculation

$$\int d^3q \left| \int_V d^3x \rho_{if} n_T e^{i(\vec{q}-\vec{K})\cdot\vec{x}} \right|^2 F_a(\vec{q}) \equiv (\rho_{if} n_T)^2 V^2 \mathcal{A}$$

 $\vec{K} = \vec{k}_t + \vec{k}_s - \vec{p}_{if}$ and \vec{p}_{if} the phase imprinted

$$\mathcal{A} = \frac{1}{(\pi R^2 L)^2} \left(\frac{2\sin(K_{\parallel}L)}{K_{\parallel}}\right)^2 \left(\frac{2\pi R}{K_{\perp}}J_1(K_{\perp}R)\right)^2 \qquad \text{Cylinder of radius R, length L}$$

$$K_{\parallel} = \epsilon_{if} - \omega_t \cos \theta_t - \omega_s \cos \theta_s , \quad K_{\perp} = \left((\omega_t \sin \theta_t - \omega_s \sin \theta_s)^2 + 4\omega_t \omega_s \sin \theta_t \sin \theta_s \sin^2 \frac{\varphi_s}{2} \right)^{1/2}$$

Excitation and trigger configuration

 Raman excitation
 Deexcitation

 |e> $\stackrel{\frown}{=} \omega_2$ $\stackrel{\frown}{=} \omega_1^{\circ} \omega_2^{\circ}$

 |e> $\stackrel{\frown}{=} \omega_1^{\circ} \omega_2^{\circ}$ $\stackrel{\frown}{=} \omega_1^{\circ} \omega_2^{\circ}$

 |g> Axion absorption

 $E_{eg}=\omega_1-\omega_2$ P_{eg}

Energy and momentum conservation uses as a guide

From the same direction

Other possibilities: works in progress

- Targets of smaller level spacing: Fine-structure levels, HFS, molecular vibration (I_2 etc)
- Use of microwave or rf to get larger angular separation from PSR background

$$\theta_i \tan \frac{\theta_j}{2} = \frac{m_a}{\epsilon_{if}}, \quad (ij) = (st)$$

T-odd, P-odd asymmetries for background rejection

Summary

- Proposed atomic/molecular experiments for galactic axion search
- Detailed calculation for para-H_2. Detectable rate without backgrounds

- Tunable for 10 umeV axion mass
- A wide parameter range search possible

• Many interesting alternatives to be studied